Акустический датчик в радиолюбительских конструкциях

Схема акустического датчика в радиолюбительских конструкциях

В первой рассмотренной схеме датчик акустического типа собран на основе пьезоэлектрического звукового излучателя, реагирует на различные вибрации в поверхности, к которой он прислонен. Основа других конструкции - типовой микрофон.
Радиоконструкторы на любой вкус

Акустический датчик на базе пьезоэлектрического излучателя

Этот датчик будет эффективен в том случае, если контролируемая им поверхность является хорошим проводником акустических волн (металл, керамика, стекло и т.п). Акустическим преобразователем в данной радиолюбительской конструкции является типовой пьезоэлектрический звуковой излучатель от китайского мультиметра типа М830. Он представляет собой округлый пластмассовый корпус, в котором размещается латунная пластина. На её поверхности, противоположной корпусу имеется пьезоэлектрический элемент, наружная сторона которого посеребрена. Провода выходят от посеребренной поверхности и от латунной пластины. Датчик, на контролируемую поверхность необходимо установить так, чтобы его пластмассовый корпус хорошо контактировал с контролируемой поверхностью. При установке акустического преобразователя на стекло для увеличения чувствительности можно вытащить излучатель из корпуса и прикрепить так, чтобы к стеклу была прижата его гладкая латунная поверхность.

Схема акустического датчика для охранной системы

При воздействии на поверхность, с которой контактирует преобразователь В1 в нем генерируются электрические колебания, которые усиливаются предварительным усилителем и преобразуются в логические импульсы компаратором на ОУ А1. Чувствительность устройства регулируют подстроечным сопротивлением R3. Если генерируемое напряжение, появляющееся в преобразователе превышает порог чувствительности ОУ. На его выходе образуются логические импульсы носящие хаотический характер.

Логическое устройство построено на микросборке К561ЛА9. Схемотехническая реализация представляет собой типовой одновибратор по схеме RS-триггера, с блокировкой входа. При подаче напряжения, от источника питания триггер переключается в единичное состояние и остается невосприимчивым к входным импульсам в течении времени пока идет зарядка конденсатора С2 через резистор R6. После завершения зарядки этой емкости триггер разблокируется.

С поступлением первого импульса от акустического датчика триггер переключается в нулевое состояние. Транзисторный ключ VT1-VT2 отпирается и подсоединяет нагрузку реле или сирену из системы охранной сигнализации. (Нагрузку подсоединяют параллельно диоду VD2). При этом начинается зарядка емкости С3 через резистор R13. Пока эта зарядка идет триггер удерживается в нулевом состоянии. Затем, он сбрасывается в единичное и нагрузка отключается.

Для исключения зацикливания схемы из-за собственных акустических колебаний, созданных сиреной существует цепочка C4-R11, которая будет блокировать вход логического устройства, и откроет его только через небольшой временной интервал после отключения нагрузки. Заблокировать логическую схему можно нажатием тумблера S1. Конструкция вернется в рабочий режим через 10 секунд после отпускания тумблера S1. Напряжение питания Uп должно лежать в интервале 5-15 Вольт.

Акустический датчик на основе микрофона

Предварительное усиление сигнала происходит в левой части схемы. Биполярный транзистор VT1 типа КТ361 или его более современный аналог, на базу которого через емкость С2 следует сигнал с микрофона M1, который вместе с сопротивлением R4 образует однокаскадный микрофонный усилитель. Транзистор VT2 типа КТ315 является типовым эмиттерным повторителем и осуществляет функцию динамической нагрузки первого каскада. Ток им потребляемый, не должен превышать 0,4-0,5 мА.

Схема акустического датчика на основе микрофона

Дальнейшее усиление сигнала осуществляется микросхемой DA1 типа КР1407УД2 с малым током потребления. Он включен по схеме дифференциального усилителя. Поэтому синфазные помехи наводимые в соединительных проводах отлично подавляются. Коэффициент ослабления синфазных входных напряжений составляет 100 дБ. Сигнал снимаемый с нагрузочных сопротивлений R6 и R7 следует через конденсаторы С3 и С4 на инвертирующий и неинвертирующий входы ОУ DA1. Коэффициент усиления сигнала можно регулировать путем изменения номиналов сопротивлений R8 и R9. Сопротивления R10, R11 и емкость С5 создают искусственную среднюю точку, в которой напряжение равно половине напряжения блока питания. Сопротивлением R13 задаем необходимый ток потребления микросхемы.

Акустический датчик на транзисторах

На рисунке ниже показана схема простого высоко чувствительного звукового датчика, который управляет нагрузкой при помощи реле. В разработке применен электретный микрофон, при использовании ECM необходим резистор R1 сопротивление от 2,2 кОм до 10 кОм. Первые два биполярных транзистора представляют собой предварительный микрофонный усилитель, R4 С7 в данной схеме устраняют нестабильность усилителя.

После усилителя на BC182B акустический сигнал поступает на выпрямитель на диодах 1N4148 и конденсаторе С5, полученное постоянное напряжение после выпрямителя управляет работой транзистора BC212B, который в свою очередь управляет реле.

Вариант 2

Схема акустического реле на транзисторах

Схема проста и в наладке не нуждается, к недостаткам можно отнести следующее: реле реагирует на любые громкие звуки, особенно на низких частотах. Кроме того наблюдалась нестабильная работа конструкции при минусовой температуре.