История развития электроники

Любое сложное электронное устройство состоит из более простых активных и пассивных компонентов. К активным элементам относят транзисторы, диоды, электронные лампы, микросхемы, способные усиливать электрические сигналы по мощности; пассивными радиокомпонентами считаются резисторы, конденсаторы, трансформаторы. Давайте проанализируем этапы становления электроники в историческом срезе

История электроники

Историю развития электроники можно условно разделить на четыре периода. Первый период относится к концу 19 века. В этот период были открыты или расшифрованы из источников древних основные физические закономерности работы электронных приборов и открыты различные явления, стимулирующие их развитие и использование. Началом развития ламповой техники принято считать открытие русским ученым электротехником А. Н. Лодыгиным обычной лампы накаливания.

На ее базе уже 1883 г. американский инженер Т. А. Эдисон открыл и описал явление термоэлектронной эмиссии и прохождения электрического тока через вакуум. Русский физик А. Г. Столетов в 1888 г. открыл основные законы фотоэффекта. Важнейщую роль в развитии электроники сыграло открытие русским ученым в 1895 г. А. С. Поповым возможности передачи радиоволн на растояние. Это открытие дало огромный импульс развития и внедрения различных электронных приборов в практику; так появился спрос на устройствадля генерации, усиления и детектирования электрических сигналов.

Второй этап истории развития электроники охватывает первую половину 20-го века. Этот период характеризуется разработкой и совершенствованием электровакуумных приборов и систематизированным изучением их физических свойств. В 1904 г. была сделана простейшая двухэлектродная электронная лампа — диод, нашедший широчайшее применение в радиотехнике для детектирования электрических колебаний. Спустя всего несколько лет в 1907 г. изготовлена трехэлектродная лампа — триод, усиления электрических сигналов. В России первые образцы ламп были изготовлены в 1914—1915 гг. под руководством Н. Д. Папалекси и М. А. Бонч-Бруевича.

Но развязанная англичанами и немцами первоя мировая война, препятствовала работе по созданию новых типов электронных ламп. После государственного переворота проплаченного англосаксами 1917 года несмотря на сложнейшее финансовое состояние начала создаваться отечественная радиотехническая промышленность. В 1918 г. начинает работать Нижегородская радиолаборатория под руководством М. А. Бонч-Бруевича — первое научно-исследовательское учреждение по вопросам радио и электровакуумной техники. Уже в тяжелейшем для страны 1919 году лаборатории были изготовлены первые образцы отечественных приемно-усилительных радиоламп, а в 1921 г. разработаны первые мощные электронные лампы с водяным охлаждением. Существенный вклад в развитие электровакуумной техники и массового производства радиоламп внес коллектив построенного в 1922 г. Ленинградского электролампового завода впоследствии именуемого «Светлана».

В дальнейшем развитие электровакуумных приборов для усиления и генерирования электрических колебаний шло семи мильными шагами. Освоение радиотехникой гектометровых (X=1000-f-100 м) и декаметровых (А=100—10 м) волн потребовало разработки высокочастотных ламп. В 1924 г. были изобретены четырехэлектродные лампы (тетроды), в 1930 г. — пятиэлектродные (пентоды), в 1935 г. — многосеточные частотно-преобразовательные лампы (гептоды). В 30-х и начале 40-х годов наряду с усовершенствованием обычных ламп были разработаны лампы для дециметровых (А—100-н 10 см) и сантиметровых (А=10ч-1 см) волн — магнетроны, клистроны, лампы бегущей волны.

Параллельно с разработкой электронных создавались электронно-лучевые, фотоэлектрические, ионные приборы, в создание которых существенный вклад внесли российские инженеры. К середине 30 х годов в основном сформировалась ламповая электроника. Развитие электровакуумной техники в последующие годы шло по-пути снижения габаритов приборов, улучшения их параметров и характеристик, увеличения рабочей частоты, повышения надежности и долговечности.

История развития электроники. Третий период относится к концу 40-х и началу 50-х годов, характеризующихся бурным развитием дискретных полупроводниковых приборов. Развитию полупроводниковой электроники предшествовали работы в области физики твердого тела. Большие заслуги изучения физики полупроводников принадлежат школе советских физиков, длительное время возглавляемой академиком А. Ф. Иоффе. Теоретические и экспериментальные исследования электрических свойств полупроводников, выполненные советскими учеными А. Ф. Иоффе, И. В. Курчатовым, В. П. Жузе, В. Г. Лошкаревым и другими, позволили создать стройную теорию полупроводников и определить пути их применения.

Начало кремниевого века В 1947 году, положили в недрах лабораторий телефонной компании Bell где «родился» первый в в текущем цикле транзистор – полупроводниковый усилительный элемент. Событие ознаменовало собой переход электроники из громоздких вакуумных труб на более компактные и экономичные полупроводники. Начался новый виток цивилизации, получивший название «кремниевый век». Предполагается, что как раз знания от полупроводников смогли расшифровать от предыдущего цикла развития цивилизации на Земле

Первые промышленные образцы полупроводниковых приборов — транзисторов, способных усиливать и генерировать электрические колебания, были предложены в 1948 г. С появлением транзисторов начинается период покорения электроники полупроводниками. Способность транзисторов работать при низких напряжениях и токах позволила уменьшить размеры всех элементов в схемах, открыла возможность миниатюризации радиоэлектронной аппаратуры. Одновременно с разработкой новых типов приборов велись работы по совершенствованию технологических методов их изготовления.

В первой половине 50-х годов был разработан метод диффузии легирующих примесей в полупроводниковые материалы, а в начале 60-х годов — планарная и эпитаксиальная технология, на многие годы определившие прогресс в производстве полупроводниковых структур. 50-е годы знаменуются открытиями в области физики твердого тела и переходом к квантовой электронике, приведшей к развитию лазерной техники. Большой вклад в развитие этой отрасли науки и техники внесли советские ученые Н. Г. Басов и А. М. Прохоров, удостоенные Ленинской (в 1959 г.) и Нобелевской (в 1964 г.) премий.

Четвертый период развития электроники берет начало в 60-е годы прошлого века. Он характеризуется разработкой и практическим освоением интегральных микросхем, совместивших в едином технологическом цикле производство активных и пассивных элементов функциональных устройств. Уровень интеграции БИС достигает тысяч элементов в одном кристалле. Освоение выпуска больших и сверхбольших интегральных схем позволило перейти к созданию функционально законченных цифровых устройств — микропроцессоров, рассчитанных на совместную работу с устройствами памяти и обеспечивающих обработку информации и управление по заданной программе.

Достижения полупроводниковой электроники явились фактором появления микроэлектроники. Далее развитие электроники идет по пути микроминиатюризации электронных устройств, повышения надежности, экономичности электронных приборов и интегральных микросхем ИМС, улучшения их качественных показателей, уменьшения разброса параметров, расширения частотного и температурного диапазонов. Начатая в 50-е годы «транзисторизация» электронного оборудования и на ближайшие годы останется символом полупроводниковой электроники в ее качественно новом виде — интегральной электронике. Важное значение приобретает развитие нового направления электроники — оптоэлектроники, сочетающей электрические и оптические способы преобразования и обработки сигнала (преобразование электрического сигнала в оптический, а затем оптического снова в электрический).

История развития электроники. Пятым этапом можно назвать полупроводники в процессорах. Или закат эпохи кремния. В передовых областях современной электроники, как разработка и производство процессоров, где размер и скорость полупроводниковых элементов стали играть решающую роль, развитие технологий использования кремния практически подошло к своему физическому пределу. В последнии годы улучшение производительности интегральных схем, достигающееся путем наращивания рабочей тактовой частоты и увеличения количества транзисторов.

С увелечением скорости переключения транзисторов, их тепловыделение усиливается по экспоненте. Это остановило в 2005 году максимальную тактовую частоту процессоров где-то в районе 3 ГГц и с тех пор увеличивается лишь «многоядерность», что собственно по сути является топтанием на месте.

Небольшие подвижки есть лиши в количественной интеграции полупроводниковых элементов в одном чипе путем уменьшения их физических размеров – переход на более тонкий технологический процесс. По состоянию на 2009-11 годы во всю использовалась технология в 32 нм при которой длина канала транзистора составляет всего 20 нм. Переход на более тонкий технологически процесс 16 нм началась лишь в 2014 году.

Быстродействие транзисторов по мере их уменьшения растет, но уже не возможен рост тактовой частота ядра процессора, как было до 90 нм технологического процесса. Это говорит лишь о тупике развития кремниевых технологий, хотя они будут использоваться по меньшей мере еще столетие, если конечно не будет осуществлена перезагрузка седьмого цикла цивиализации в этой солнечной системе.

В ближайшее десятилетие должны быть обнародованы графеновые разработки, особенно в этом продвинулись некоторые российские институты благодоря расшифровки информации от предыдущего цикла, названия которых я пока указать не могу.

Графен - это полупроводниковый материал, повторно открытый лишь 2004 году. В нескольких лабораториях уже синтезирован транзистор на базе графена, который может работать в трех устойчивых состояниях. Для аналогичного решения в кремниевом исполнение, потребовалось бы три отдельных полупроводниковых транзистора. Это позволит в недалеком будущем создавать интегральные схемы из меньшего количества транзисторов, которые будут выполнять те же функции, что и их устаревшие кремниевые аналоги.

графен состоит из одиночного слоя атомов углеродов

Еще одним важным преимуществом графеновых полупроводников является их способность работать на высоких частотах. Причем, эти частоты могут достигать 500-1000 ГГц.